A Class of Chiral Octaheral Iridium(III) Complexes Bearing Achiral Ligands

Qinghe Liu Hu Group Meeting January 19th 2015

Contents

Part 1: Synthesis of enantiomerically pure iridium complexes

Part 2: Asymmetric catalysis with these iridium complexes
Part 3: conclusion

Contents

Part 1: Synthesis of enantiomerically pure iridium complexes

Part 2: Asymmetric catalysis with these iridium complexes
Part 3: conclusion

synthesis of iridium complexes

Nonoyama, G. *Bull. Chem. Soc. Jpn.* **1974**, *47*, 767. Chen, L.; Meggers, E. *J. Am. Chem. Soc.* **2013**, *135*, 10598.

synthesis of iridium complexes

First Generation:

Chen, L.; Meggers, E. J. Am. Chem. Soc. 2013, 135, 10598.

synthesis of iridium complexes

Sencond Generation:

Huo, H.; Meggers, E. J. Am. Chem. Soc. 2014, 136, 2990.

Contents

Part 1: Synthesis of enantiomerically pure iridium complexes

Part 2: Asymmetric catalysis with these iridium complexes

Part 3: conclusion

Bifunctional hydrogen-bonding asymmetric organocatalysis as inspiration for a chiral-at-metal iridium.

The coordinated pyrazole acts as a double hydrogen bond donor to a nitroalkene, whereas a hydroxymethyl substituent on a benzoxazole serves as a hydrogen-bond acceptor for the mucleophile.

Chen, L.; Meggers, E. J. Am. Chem. Soc. 2013, 135, 10598.

Development of inert chiral-at-metal Ir(III) complexes for the asymmetric transfer hydrogenation of nitroalkene with Hantzsch ester.

		R ₁ BA N HN HN R ₁]+ vrF ₂₄ -			$tBuO_2C$ NO ₂ (1.1 eq) cat. Ir1-7 toluene	,CO₂tBu		NO ₂
	- \ <u>·</u>	_/		entry	cat.	loading (mol %)	t (h)	conv. (%)	ee (%)
	1			¦ <u>1</u>	lr1	20	22	92	63
Cat	R_1	R ₂	R ₃	2	lr2	20	24	82	70
lr1	CH ₂ OH	Н	Н	3	lr3	20	22	94	84
lr2	CH ₂ OH	<i>n</i> Bu	Н	4	lr4	20	7	96	90
lr3	CH ₂ OH	Ph	Н	5	lr5	20	1	100	99
lr4	CH ₂ OH	COCF ₃	H	6	lr5	1	20	96	98
lr5	CH ₂ OH	COCF ₃	Ph	, 0 7	lr6	1	14	94	99
lr6	CH ₂ OH	$COCF_3$	3,5-Me ₂ C ₆ H ₃		Ir7	20	20	<20	0
lr7	Н	Ph	Н			•			

Scope of the asymmetric transfer hydrogenation with Ir6.

entry	R ¹ , R ²	loading (mol %)	t (h)	yield. (%)	ee (%)
1	<i>n</i> Hex, Ph	1	18	94	99
2	<i>n</i> Pr, Ph	1	24	96	98
3	iPr, Ph	1	24	92	96
4	Me, Ph	1	22	91	95
5	Me, <i>p</i> -MePh	1	24	95	95
6	Me, <i>p</i> -ClPh	1	24	93	94
7	Me, <i>m</i> -ClPh	1	24	91	93
8	Me, 2-naphthyl	1	24	96	96
9	<i>n</i> Hex, Ph	0.3	72	95	97
10	<i>n</i> Hex, Ph	0.1	96	89	94

Chen, L.; Meggers, E. J. Am. Chem. Soc. 2013, 135, 10598.

Proposed a model of ternary complex formed by catalyst, nitroalkene, and Hantzsch ester leading to the transition state..

Organic H-Bonding Catalyst

Chiral-At-Metal Octahedral H-Bonding Catalyst

Chen, L.; Meggers, E. J. Am. Chem. Soc. 2013, 135, 10598.

Development of a chiral-at-metal Ir(III) complex for the enantioselective Fiedel-Crafts alkylation of indole with the nitroalkene.

Cat	R	R'
lr1	CH ₂ OH	3,5-Me ₂ Ph
lr2	CONEt ₂	3,5-Me ₂ Ph
lr3	CONEt ₂	N-carbazolyl

(CO ₂ iPr	D_2 $(2.0-5.0 \text{ eq})$ cat. Ir1-3 toluene	P		₂iPr NO₂
entr	y cat.	conditions	t (h)	conv.	(%) ee (%)
1	lr1 (5 mol%)	alkene (1M), indole (2 eq)) 72	71	70
2	lr2 (5 mol%)	alkene (1M), indole (2 eq) 24	87	96
3	lr2 (2 mol%)	alkene (1M), indole (2 eq)) 58	77	93
4	lr3 (2 mol%)	alkene (1M), indole (2 eq) 36	97	98
5	lr3 (1 mol%)	alkene (2M), indole (2 eq) 24	93	96
6	lr3 (1 mol%)	alkene (1M), indole (2 eq)24	98	96
7	Ir3 (1 mol%)	alkene (2M), indole (2 eq) <12	100	96

Chen, L.; Meggers, E. Angew. Chem., Int. Ed. 2013, 52, 14021.

Proposed a model of ternary complex composed of catalyst, nitroalkene, and indole leading to the transitions state.

Chen, L.; Meggers, E. *J. Am. Chem. Soc.* **2013**, *135*, 10598. Chen, L.; Meggers, E. *Angew. Chem., Int. Ed.* **2013**, *52*, 14021.

Enantioselective Friedel-Crafts addition of indole to α , β -unsaturated imidazole catalyzed by Ir(III) complex.

Substitution of the chiral auxiliary ligand by two acetonitrile ligands..

((1.5-2.5 eq)		CH₃	NH
entr	y solvent	conditions	t (h)	conv.	(%) ee (%)
1	MeCN	indole (1.5 eq, 0.75 M), rt	20	35	95
2	MeOH	indole (1.5 eq, 0.75 M), rt	20	70	95
3	CH_2CI_2	indole (1.5 eq, 0.75 M), rt	20	90	94
4	THF	indole (1.5 eq, 0.75 M), rt	20	85	96
5	THF	indole (2.5 eq, 2.5 M), rt	20	100	96
6	THF	as entry 5 plus air	20	100	96
7	THF	as entry 5 plus air and 1% H_2O	20	88	96
8	THF	indole (2.5 eq, 2.5 M), 0 ^o C	36	100	97

Huo, H.; Meggers, E. J. Am. Chem. Soc. 2014, 136, 2990.

Enantioselective Friedel-Crafts addition of indole to α , β -unsaturated imidazole catalyzed by Ir(III) complex.

	N N R ⁶	R^5 (1.5-2.5 eq) cat. lr1		N N N R ⁶	R ⁵		Re face blocked
entry	R ⁵ , R ⁶	loading (mol %)	T (°C)	t (h)	yield. (%)	ee (%)	Si face approach
1	Et, Me	2.0	0	48	89	96	
2	<i>n</i> Bu, Me	2.0	rt	20	97	91	OUT THE H
3	<i>i</i> Pr, Me	2.0	rt	48	78	93	Λ
4	Ph, Me	1.0	rt	16	98	93	
5	CO ₂ Et, Me	1.0	rt	24	97	98	• One face of the allong is
6	Me, <i>i</i> Pr	1.0	rt	24	99	97	
7	Me, <i>i</i> Pr	0.5	rt	44	97	97	sterically shielded by one of
8	Me, <i>i</i> Pr	0.25	rt	60	91	97	the tert-butyl groups.

The possibility that these chiral Lewis acids intertwine chiral enolate catalysis with photoredox radical ion chemistry?

Ir 1 (X = O), Ir 2 (X = S)

 $\begin{array}{c} & & \\ & &$

entry solvent		illumination	conditions	t (h)	conv. (%	%) ee (%)
1	lr 1 (5 mol%)	visible light	imidazole(0.3M, 3eq), MeOH, rt	20	85	95
2	lr 1 (2 mol%)	visible light	Na ₂ HPO ₄ , imidazole(1.2M, 3eq)	3	97	95
3	lr 2 (2 mol%)	visible light	same as above	1.5	100	99
4	lr 2 (0.5 mol%)	visible light	same as above	4.5	97	98
5	lr 2 (2 mol%)	dark	same as above	1.5	<5	n.d.
6	none	visible light	same as above	16	0	n.a.

Huo, H.; Meggers, E. Nature 2014, 515, 100.

Distances between the quaternary carbon atoms of the tert-butyl groups and the nitrile carbons of the neighboring acetonitrile.

Huo, H.; Meggers, E. Nature 2014, 515, 100.

The possibility that these chiral Lewis acids intertwine chiral enolate catalysis with photoredox radical ion chemistry?

Ir 1 (X = O), Ir 2 (X = S)

 $\begin{array}{c} & & \\ & &$

entry solvent		illumination	conditions	t (h)	conv. (%) ee (%)
1	lr 1 (5 mol%)	visible light	imidazole(0.3M, 3eq), MeOH, rt	20	85	95
2	lr 1 (2 mol%)	visible light	Na ₂ HPO ₄ , imidazole(1.2M, 3eq)	3	97	95
3	lr 2 (2 mol%)	visible light	same as above	1.5	100	99
4	lr 2 (0.5 mol%)	visible light	same as above	4.5	97	98
5	lr 2 (2 mol%)	dark	same as above	1.5	<5	n.d.
6	none	visible light	same as above	16	0	n.a.

Huo, H.; Meggers, E. Nature 2014, 515, 100.

The independently synthesized racemic enolate iridium complex II (intermidiate II) catalyzes the photoredox reaction with an identical efficiency compared to Ir2, thereby confirming that complex II (intermidiate II) is competent.

Contents

Part 1: Synthesis of enantiomerically pure iridium complexes

Part 2: Asymmetric catalysis with these iridium complexes
Part 3: conclusion

Summary and Outlook

A coordinated pyrazole acts as a double hydrogen-bond donor to a nitroalkene, and a hydroxymethyl substituent on a benzoxazole ligand serves as a hydrogen-bond acceptor for the incoming nucleophile.
The iridium centre acts as a chiral centre, a catalytic centre, and a photoredox centre.

Their research methods are similar with our development of fluorinated sulfone or sulfoximine reagents. They change the activity of iridium complex by regulation of the substituents, and we regular the nature of sulfone or sulfoximine reagents by changing functional groups. Thanks for your attention